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It is widely accepted that metabolic rates scale across species
approximately as the 3�4 power of mass in most if not all groups
of organisms. Metabolic demand per unit mass thus decreases as
body mass increases. Metabolic rates reflect both the ability of the
organism’s transport system to deliver metabolites to the tissues
and the rate at which the tissues use them. We show that the
ubiquitous 3�4 power law for interspecific metabolic scaling arises
from simple, general geometric properties of transportation net-
works constrained to function in biological organisms. The 3�4
exponent and other observed scaling relationships follow when
mass-specific metabolic demands match the changing delivery
capacities of the network at different body sizes. Deviation from
the 3�4 exponent suggests either inefficiency or compensating
physiological mechanisms. Our conclusions are based on general
arguments incorporating the minimum of biological detail and
should therefore apply to the widest range of organisms.

L iving organisms span an impressive range in body mass,
varying over some 21 orders in magnitude (1, 2) from

mycoplasma (10�13 g) to the blue whale (108 g). Biologists have
described a large number of relationships that link body size to
organ sizes, rates of physiological processes, and biological cycle
times (3–5). These relationships usually take the form of power
laws, allometric scaling relationships of the form Y � aMb, where
M is body mass, Y is the biological property of interest, and a and
b are constants specific to the relationship.

Strikingly, the exponents b of a wide variety of biological
properties appear to be obtainable from the number 4, even
though the systems are three dimensional (3, 4, 6). The reason
that so many properties exhibit this unexpected scaling is pre-
sumably their relationship to, or dependence on, the rates of
metabolic processes. Whole-body metabolic rates themselves
generally scale with an exponent b approximately equal to 3�4,
and this well-known phenomenon is widespread among unicel-
lular and multicellular animals and plants (3, 4, 6). Although
individual datasets comprising ecologically and physiologically
heterogeneous species often show some variation (3, 7, 8), the
3�4 exponent is widely accepted as a near-universal general
description of the interspecific scaling of metabolism (1–6, 9, 10).
That scaling exponents related to the number 4 are so pervasive
in nature suggests that the underlying explanation ought to be
general and simple, and not dependent on the details of the
metabolic machinery of particular types of organisms.

There has been a flurry of recent activity (11–14) aimed at
providing possible explanations for the exponents observed in
the scaling of metabolism. Dodds et al. (8) have carried out a
reexamination of recent theories and conclude that none of them
is convincing. Our goal is to attack this open theoretical problem
and present a general explanation for observed scaling relation-
ships. Our work builds on a theorem pertaining to the scaling of
general networks (14). In this paper, we pay careful attention to
the specific constraints imposed on such networks when they are
functioning components of the metabolic systems of biological
organisms. We describe precise conditions under which 3�4
metabolic scaling would be expected, without reference to
non-Euclidean geometry, ‘‘fractal-like’’ branching networks, or
other specific (and rather exotic) features that have been claimed

(6, 11–13) to be required for organisms to exhibit 3�4 scaling.
Our theory is based on familiar geometric principles and physical
constraints that apply to living and nonliving systems alike.

Metabolism in most organisms entails the transportation of
metabolites to the various regions of the body from an internal
source. For example, in vertebrates and many other organisms,
a heart pumps blood, which carries oxygen to the tissues of the
body, where the oxygen is used in the biochemical processes of
respiration. For convenience, in the rest of the paper we will
allude to ‘‘blood’’ as the fluid carrying the metabolites, but the
same considerations would apply for any fluids carrying any kind
of metabolites that potentially limit the rate of metabolism. Note
also that we assume that metabolite concentration in the blood
is independent of body mass, as is the case among vertebrates (4).
Likewise, we will assume that the energy capacity ‘‘delivered’’
per unit time is simply proportional to the volume of blood
delivered to the tissues per unit time. We also assume for
simplicity that among species being compared, tissue density is
the same at all body sizes, such that mass and volume scale
isometrically.

The most efficient transportation network (14, 15) for sup-
plying metabolites is one that is directed—the flow of metabolites
is always away from the source, and there is no large-scale
backtracking. We first consider how the simple geometric prop-
erties of such a network allow us to express its capacity to deliver
metabolites at minimal cost at different body sizes.

Consider a system in D dimensions (D � 3 in most cases of
interest) having a volume, V, and mass, M, both proportional to
Lp

D (Lp denotes the physical length of the system):

M�V�Lp
D [1]

The total metabolic rate of the organism, B, scales as

B�Lp
DE, [2]

where E is the rate of energy use per unit volume (and scales in
the same manner as does mass-specific metabolic rate or met-
abolic intensity). Our aim is to determine how E scales with M.

Consider a transportation network delivering metabolites to a
set of nodes. Let u be the characteristic length scale, independent
of body mass, separating neighboring nodes of the network. The
local f low rate in the network is the amount of mass transported
past a given location per unit time. An efficient transportation
system (14) delivering metabolites satisfies

F��Lp�u�B, [3]

where F is the sum of all individual f low rates. Physically, for any
directed transportation network Lp�u is the mean distance from
the source to the nodes, measured in terms of the basic length
unit, u. Eq. 3 has been proven as a mathematical theorem (14).
Fig. 1 illustrates the theorem and its consequences for directed
transportation networks.
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For organisms, there is an important additional constraint that
does not apply to many physical systems (such as the one
described in Fig. 1). An organism’s transport network must be
contained entirely within the body, and it thus constitutes part
of the body volume and mass. It is observed empirically that,
among mammals, blood mass is a constant proportion (6–7%) of
body mass across more than 5 orders of magnitude in size (4, 5).
From a functional, and developmental point of view, this is
understandable. If in organisms the circulatory system were to
scale as does the network depicted in Fig. 1 (to maintain constant
nutrient delivery rate per unit volume of body mass, i.e., a
constant E), the blood volume, assumed in ref. 14 to be
proportional to F, would scale with body mass with an exponent
greater than 1 (4�3 when D � 3). Large species would then have
a great deal of blood per unit volume of tissue, whereas small
species would have relatively very little. In fact, if we start with
an ordinary 50-g mouse (assuming blood mass to be 7% of body
mass) and scale its blood volume to larger body sizes by using the
exponent of 4�3, we see that mammals of as little as 160 kg in
mass would have to be composed entirely of blood. Clearly,
biological function would be compromised long before this size
was reached. Even relatively small changes of body size would
entail radical changes in composition of the body’s tissues, not
what is generally observed. Indeed, in all groups of organisms,
tissue composition is conserved as much as possible across body
sizes. We assume then that generally the volume and mass of the
blood will scale approximately isometrically with body mass and
be proportional to Lp

3, as is the case in mammals. The main
consideration in the present context is that mass-specific meta-
bolic demand must change to match the way the capacity of the
network scales when it is subject to this constraint.

Because under the foregoing constraint the total mass of the
blood scales isometrically with the total mass of the body, we can
replace the blood mass with body mass in any expression without
changing the body-mass scaling behavior of any dependent
quantity. Accordingly, we now use the body mass, M, and F (the
total blood flow, which has units of mass�time) to define a
quantity that has the dimensions of inverse time and is purely a
property of the geometry of the transportation network,

r1 � F�M. [4]

The quantity r1 is a measure of the total f low rate of the
metabolites per unit mass of the organism. Combining Eqs. 1–4,
we find

r1�ELp�u. [5]

The usefulness of this quantity will become apparent shortly.
Note that r1 is not the measured rate of delivery of metabolites.
Rather, r1 represents (in its scaling behavior with respect to body
mass M) the way that the geometry of an efficient network in an
organism changes with body mass (and in so doing imposes a

Fig. 1. Example of general scaling properties of directed transportation
networks. The figure illustrates in a schematic way the mathematical theorem
proven in ref. 14, a nonbiological case in which the volume of the transport
network is not constrained to scale isometrically with the volume that it is
supplying (see text). This theorem can be directly applied to the study of
network allometry (14, 19). Symbols are as defined in the text. Our example
network consists of water (‘‘blood’’) being transported from a source (‘‘the
heart’’) at a constant rate to each house of a space-filling neighborhood of
identical houses (‘‘all parts of the body’’). For ease of illustration, we have
represented everything as if it occurred in two dimensions (D � 2), but the
argument and theorem apply in the same way to the three-dimensional case.
Consider two neighborhoods of different size (X and Y, where the number of
houses is proportional to their respective areas, A). The amount of water each
pipe must carry per unit time is indicated adjacent to the respective pipe in the
figure. The total flow rate of water (F) in a network must scale as A(D�1)/D to
supply each house at a constant rate independent of the size of the neigh-
borhood. Thus the quantity of the circulating water increases superlinearly
with neighborhood size. A more detailed explanation is as follows: Neigh-
borhoods X and Y are of different sizes (characterized by different physical
lengths, Lp). To make units explicit, we standardize our length scale to be in
units of u, a length based on the size of a typical house and its immediate
environs. The area (or volume) associated with a house is uD. The amount of
water leaving the source per unit time and thence arriving at the houses
constitutes the total ‘‘metabolic rate’’ (B) of each neighborhood. All of the
houses are identical, and in each neighborhood they consume the same
amount of water per unit time per house (EuD, where E is the rate of water use
per unit area). (Note that in the biological case, E would depend on the size of
the ‘‘neighborhood.’’) The sum of the individual flow rates (the amount of
water circulating in all the pipes of a neighborhood per unit time), F, is
proportional to B but with a proportionality constant equal to the mean
distance from the source to all the houses, measured along the transportation
route. This additional factor arises because the transportation system contains
water bound to all houses, and each house places an additional requirement
on F of an amount proportional to its distance from the source. For example,
to satisfy the requirement that a house three units (3 u) from the source is
supplied by an amount EuD of water (over every unit time interval), it is
necessary to ensure that there is a total amount 3 EuD of water in the pipes on
the way to the house that will not be used by any intervening house. The most
efficient transportation system, characterized by the smallest F, is one in which
this mean distance from the source to the houses is as small as possible. This
happens when the transportation is directed away from the source toward the
houses. In a D dimensional space, B scales as Lp

DE, where Lp is the physical length
of the neighborhood, and the number of houses scales as (Lp�u)D. Our
theorem (14, 15) asserts that because the additional factor corresponding to
the mean distance from the houses to the source must itself scale at least as
Lp�u, F must scale at least as BLp�u. This means that if A � Lp

D is the
conventional ‘‘size’’ of a neighborhood (its area if D � 2 or its volume if D �
3), then

F�A�D�1�/DE�u

and the total flow rate per unit area in the system thus increases with
neighborhood size; this can be readily confirmed from the figure. (An even
simpler example is the case of a one-dimensional network of length Lp, F is
proportional to 1�2�3�4� � � � �Lp. This sum scales as Lp

2 in accord with the
above equation.) It can be proven exactly that this result is independent of
whether or not one has an underlying network, as long as the flow is ‘‘radially’’
outward from the source to the sinks (17, 18). Furthermore, the result is the
same whether or not the houses are terminal units and whether or not they
lie on a regular network (as shown in Fig. 1). Also, the scaling behavior holds
in the large length scale limit independently of whether the source is at the
periphery of the neighborhood, as shown in the figure, or whether it is
somewhere within the neighborhood.
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cost, in terms of additional mass of blood per unit increase in
body mass, required to maintain constant delivery rates). For a
given E, a larger r1 means that this specific cost for the network
to deliver metabolites at a constant rate to the tissues is greater.
(Indeed, an inefficient undirected network would lead to even
larger specific costs; ref. 14). The value of r1 is proportional to
the local demand for metabolites (E), whereas the scaling
properties of an efficient transportation network (see Fig. 1) lead
to the additional factor of Lp�u in Eq. 5, which obviously itself
scales as a power of body mass. If organisms of different sizes
exhibit the same r1, they have the same specific delivery costs,
and such a case implies that E must vary across body size in such
a way as to compensate for increasing Lp�u. Note that r1 is
inversely proportional to u and therefore depends on the details
of network geometry.

At this point, we have an expression for a rate, associated with
the scaling of the capacity of the network to supply metabolites,
that depends on E, the metabolic demand per unit volume. If we
now can express the geometry of the scaling of metabolic
demand in a comparable form, we can determine the scaling of
metabolism in the case where demand and supply are matched.

Accordingly, we now switch our perspective from the supply
network to the demand locations, i.e., to what happens at the
nodes of the transportation network, where the metabolites are
being delivered. Our goal is to work out the scaling behavior of
the rate, r2, with which the metabolites are consumed or taken
in at the level of the tissues. To accomplish this, let us define a
service volume of spatial extent ls and volume ls

D, whose total
consumption is 1 metabolite (or energy) unit per unit time,
independent of body mass. Thus

Els
D � 1. [6]

Noting that 1 time unit is associated with the length ls, the time
scale corresponding to the length scale u must be proportional
to u�ls, so that the ‘‘demand’’ rate (measured in inverse time
units) is given by

r2 � ls�u. [7]

Although ls would be expected to vary with body mass, the rate
of consumption of metabolites in a service volume is invariant
with body mass. On dimensional grounds, the quantity r2 is the
unique rate at the demand locations that is inversely propor-
tional to u.

Because r2, like r1, is inversely proportional to u, the nonuni-
versal dependence on u can be eliminated on taking the ratio of
r1 and r2:

r1

r2
�

ELp

ls
. [8]

Combining Eqs. 1 and 2, we obtain B � ME and therefore
B(D�1)/D � M(D�1)/DE(D�1)/D � MEM1/DE1/D � M(ELp�ls) on
using Eqs. 1 and 6, which in turn equals Mr1�r2 (see Eq. 8), so
that

B � �M
r1

r2
�D/�D�1�

, [9]

which is independent of the length scale u.
We have considered two distinct processes associated with

metabolism: the delivery of metabolites through a network with
an associated rate r1 and the demand for the delivered metab-
olites at a rate r2. Maintaining a match between these two rates
across body sizes would require that both rates scale with body
mass in the same manner, i.e., if r1 � M s1 and r2 � M s2, that s1 �
s2. If this were not true, under changes of body mass either the

supply of the metabolites would exceed the demand or vice versa.
Although a small degree of mismatch of the exponents associ-
ated with the two rates may be tolerable over a limited range of
body mass, the harmonious matching of r1 and r2 would be
required to maintain efficiency over a large range of body mass.
Such matching of the functional components of physiological
systems is expected and commonly observed (16). When s1 � s2,
one finds straightforwardly the 3�4 scaling of metabolism and
associated relationships: B � MD/(D�1), r1 � r2 � ls � M1/D(D�1)

and E � M�[1/(D�1)]. Physiological time �0 may be defined in the
usual manner as being inversely proportional to E, leading to the
result that �0 � M1/(D�1). From the above, a large number of
observed scaling relationships widely discussed in the literature
may be straightforwardly derived (5).

The dominant effect of the scaling properties of the circulatory
system on the scaling of metabolism may seem surprising, given
that the rate of supply of metabolites to the tissues is only one
of a series of physiological and biochemical steps involved in
metabolism (16). However, here we are concerned only with how
metabolic rates may scale interspecifically and not with how they
are controlled within an individual. Intracellular processes and
properties—including the rates of chemical reactions in or-
ganelles, the function and concentration of enzymes, and the
strength of chemical bonds—are most unlikely to exhibit neces-
sary changes in direct response to the overall size of the
organism. In contrast, the capacity of the circulatory system, as
we have shown here, necessarily scales with body mass. The
correspondence between the scaling exponent for the capacity of
the circulatory system and that observed for overall metabolism
allows us to draw two conclusions: the rates of intracellular
metabolic-related processes conform roughly to the scaling of
the supply network and exert little, if any, net effect on the
scaling of overall metabolism, and the overall metabolic demand
per unit body mass is indeed ordinarily matched to the capacity
of the supply network. The latter implies that s1 � s2 in most
groups of similar organisms.

We have not specified the physiological mechanisms that
result in the maintenance of approximate equality of the scaling
exponents of r1 and r2, and the actual mechanisms may differ
among different types of organisms. The scaling behavior of r2
refers to the scaling of the total metabolic demand per unit body
mass, and there are multiple ways to alter this value, including
changes in the rates of metabolic chemical reactions and changes
in anatomy at the cell and tissue levels.

Some degree of inequality between the s values may never-
theless be maintained—on either short or long time scales—if
other physiological processes can compensate for the resulting
inefficiency. We can make some general statements about
variations in the way that the supply and demand rates would be
expected to scale and the consequences for metabolic scaling
exponents. Both s1 and s2 ought to be nonnegative, because
neither the supply nor the demand rate can decrease as the mass
increases. On general grounds (16), it is wasteful for a biological
organism to be characterized by a supply rate greater than the
demand rate, although this would still permit function. These
considerations imply that ordinarily s1 � s2. The two most
interesting cases, therefore, correspond to: s1 � s2 �
[1�D(D�1)], where the 3�4-power scaling of total metabolic
rate is obtained and there is a perfect balance between supply
and demand as derived above; and the situation when s1 � 0
corresponds to an r1 independent of body mass. (This situation
could arise, for example, if additional tissue that needed to be
supplied with metabolites were added to the body, but with no
change in the geometry of the network—for example, during
ontogenetic growth or among a group of closely related species.)
In this latter case, Eqs. 1, 2, 5, 6, 7, and 9 may readily be used to
show that the 2�3-power scaling of total metabolic rate emerges
without any reference to the surface to volume ratio. Specifically,
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B � M(D�1)/D, r2 � ls � M1/(D2) and E � M�(1/D). Physiological
time in this case turns out to scale as �0 � M1/D. Thus, the
exponent associated with the scaling of the total metabolic rate
with mass is predicted to lie usually between 2�3 and 3�4, with
the latter value being preferred because of the supply–demand
balance.

Our theory ought to be generally applicable and should
describe the major features of the biological scaling of a large
variety of organisms, because it is based on a minimal set of
essential biological details. Because the theorem pertaining to
the scaling of flow in directed networks (Eq. 3) is valid for
directed flow in general (14, 15, 17, 18; Fig. 1), and its main
implication is robust to geometrical f luctuations (19), our results
should also hold for types of organisms that may not possess
obvious branching transportation networks, such as unicellular
species.

The two foundations of our theory are the scaling properties
of optimal transportation networks and the balance between

supply and demand. The latter, as introduced and developed in
this paper, permits us to describe the specific but very simple
conditions under which quarter-power scaling of organismic
metabolism would be expected. When the scaling of demand
balances the scaling of supply, the commonly observed allomet-
ric scaling laws follow directly from the geometric properties of
the transportation network. Furthermore, our theory provides a
framework for understanding deviations from the 3�4 exponent:
supply–demand scaling imbalances stemming from inefficiency
or permitted by compensating physiological mechanisms.
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